Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Neurochem ; 159(1): 61-77, 2021 10.
Article in English | MEDLINE | ID: covidwho-1282005

ABSTRACT

Neurological symptoms are frequently reported in patients suffering from COVID-19. Common CNS-related symptoms include anosmia, caused by viral interaction with either neurons or supporting cells in nasal olfactory tissues. Diffuse encephalopathy is the most common sign of CNS dysfunction, which likely results from the CNS consequences of the systemic inflammatory syndrome associated with severe COVID-19. Additionally, microvascular injuries and thromboembolic events likely contribute to the neurologic impact of acute COVID-19. These observations are supported by evidence of CNS immune activation in cerebrospinal fluid (CSF) and in autopsy tissue, along with the detection of microvascular injuries in both pathological and neuroimaging studies. The frequent occurrence of thromboembolic events in patients with COVID-19 has generated different hypotheses, among which viral interaction with perivascular cells is particularly attractive, yet unproven. A distinguishing feature of CSF findings in SARS-CoV-2 infection is that clinical signs characteristic of neurotropic viral infections (CSF pleocytosis and blood-brain barrier injury) are mild or absent. Moreover, virus detection in CSF is rare and often of uncertain significance. In this review, we provide an overview of the neurological impact that occurs in the acute phase of COVID-19, and the role of CSF biomarkers in the clinical management and research to better treat and understand the disease. In addition to aiding as diagnostic and prognostic tools during acute infection, the use of comprehensive and well-characterized CSF and blood biomarkers will be vital in understanding the potential impact on the CNS in the rapidly increasing number of individuals recovering from COVID-19.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier , COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Humans , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis
2.
Neurology ; 96(2): e294-e300, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028474

ABSTRACT

OBJECTIVE: To explore whether hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurologic symptoms have evidence of CNS infection, inflammation, and injury using CSF biomarker measurements. METHODS: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, ß2-microglobulin, and immunoglobulin G index), blood-brain barrier integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe coronavirus disease 2019 (COVID-19) and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4 of 6), suspected meningitis (1 of 6), and dysgeusia (1 of 6). SARS-CoV-2 infection was confirmed by real-time PCR analysis of nasopharyngeal swabs. RESULTS: SARS-CoV-2 RNA was detected in the plasma of 2 patients (cycle threshold [Ct] value 35.0-37.0) and in CSF at low levels (Ct 37.2, 38.0, 39.0) in 3 patients in 1 but not in a second real-time PCR assay. CSF neopterin (median 43.0 nmol/L) and ß2-microglobulin (median 3.1 mg/L) were increased in all. Median immunoglobulin G index (0.39), albumin ratio (5.35), and CSF white blood cell count (<3 cells/µL) were normal in all, while CSF NfL was elevated in 2 patients. CONCLUSION: Our results in patients with COVID-19 and neurologic symptoms suggest an unusual pattern of marked CSF inflammation in which soluble markers were increased but white cell response and other immunologic features typical of CNS viral infections were absent. While our initial hypothesis centered on CNS SARS-CoV-2 invasion, we could not convincingly detect SARS-CoV-2 as the underlying driver of CNS inflammation. These features distinguish COVID-19 CSF from other viral CNS infections and raise fundamental questions about the CNS pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/complications , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnostic imaging
3.
Neurology ; 95(12): e1754-e1759, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-601304

ABSTRACT

OBJECTIVE: To test the hypothesis that coronavirus disease 2019 (COVID-19) has an impact on the CNS by measuring plasma biomarkers of CNS injury. METHODS: We recruited 47 patients with mild (n = 20), moderate (n = 9), or severe (n = 18) COVID-19 and measured 2 plasma biomarkers of CNS injury by single molecule array, neurofilament light chain protein (NfL; a marker of intra-axonal neuronal injury) and glial fibrillary acidic protein (GFAp; a marker of astrocytic activation/injury), in samples collected at presentation and again in a subset after a mean of 11.4 days. Cross-sectional results were compared with results from 33 age-matched controls derived from an independent cohort. RESULTS: The patients with severe COVID-19 had higher plasma concentrations of GFAp (p = 0.001) and NfL (p < 0.001) than controls, while GFAp was also increased in patients with moderate disease (p = 0.03). In patients with severe disease, an early peak in plasma GFAp decreased on follow-up (p < 0.01), while NfL showed a sustained increase from first to last follow-up (p < 0.01), perhaps reflecting a sequence of early astrocytic response and more delayed axonal injury. CONCLUSION: We show neurochemical evidence of neuronal injury and glial activation in patients with moderate and severe COVID-19. Further studies are needed to clarify the frequency and nature of COVID-19-related CNS damage and its relation to both clinically defined CNS events such as hypoxic and ischemic events and mechanisms more closely linked to systemic severe acute respiratory syndrome coronavirus 2 infection and consequent immune activation, as well as to evaluate the clinical utility of monitoring plasma NfL and GFAp in the management of this group of patients.


Subject(s)
Astrocytes/metabolism , Coronavirus Infections/blood , Glial Fibrillary Acidic Protein/blood , Neurofilament Proteins/blood , Neurons/metabolism , Pneumonia, Viral/blood , Adult , Age Factors , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Severity of Illness Index , Single Molecule Imaging
SELECTION OF CITATIONS
SEARCH DETAIL